AM–GM Algorithm for Evaluating, Analyzing, and Correcting the Spatial Scaling Bias of the Leaf Area Index

نویسندگان

چکیده

The leaf area index (LAI) is a crucial variable in climate, ecological, and land surface modeling. However, the estimation of LAI from coarse-resolution remote sensing data can be affected by spatial scaling bias, which arises nonlinearity retrieval models heterogeneity surface. This study provides an algorithm named Arithmetic Mean Geometric (AM–GM) to correct bias. It established based on negative logarithmic functions avoids second-order stationarity. In this algorithm, relationships are derived between bias arithmetic geometric means directional gap probability for two commonly used models, Beer–Lambert law semi-empirical transfer function, respectively. According AM–GM expression representing model utilized analysis Furthermore, simplified linear relationship, constructed quantities related specific resolutions. Two scenes simulated LargE-Scale image Simulation framework (LESS) three sites evaluate proposed analyze LAI. validation results show that accurate correction analyses demonstrate increases with increase value, stronger coarser resolution. at Sud-Ouest site, absolute value estimated decreases 0.10, 0.22, 0.29, 0.31 0.04, 0.01, 0.05 200 m, 500 1000 1500 m resolutions, conclusion, effective

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Three Techniques for Correcting the Spatial Scaling Bias of Leaf Area Index

The correction of spatial scaling bias on the estimate of leaf area index (LAI) retrieved from remotely sensed data is an essential issue in quantitative remote sensing for vegetation monitoring. We analyzed three techniques, including Taylor’s theorem (TT), Wavelet-Fractal technique (WF), and Fractal theory (FT), for correcting the scaling bias of LAI with empirical models in different functio...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

assessment of the park- ang damage index for performance levels of rc moment resisting frames

چکیده هدف اصلی از طراحی لرزه ای تامین ایمنی جانی در هنگام وقوع زلزله و تعمیر پذیر بودن سازه خسارت دیده، پس از وقوع زلزله است. تجربه زلزله های اخیر نشان داده است که ساختمان های طراحی شده با آیین نامه های مبتنی بر نیرو از نظر محدود نمودن خسارت وارده بر سازه دقت لازم را ندارند. این امر سبب پیدایش نسل جدید آیین نامه های مبتنی بر عملکرد شده است. در این آیین نامه ها بر اساس تغییرشکل های غیرارتجاعی ...

15 صفحه اول

Spatial Up-Scaling Correction for Leaf Area Index Based on the Fractal Theory

The scaling effect correction of retrieved parameters is an essential and difficult issue in analysis and application of remote sensing information. Based on fractal theory, this paper developed a scaling transfer model to correct the scaling effect of the leaf area index (LAI) estimated from coarse spatial resolution image. As the key parameter of the proposed model, the information fractal di...

متن کامل

the search for the self in becketts theatre: waiting for godot and endgame

this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2072-4292']

DOI: https://doi.org/10.3390/rs15123068